3x^2+24x+23=0

Simple and best practice solution for 3x^2+24x+23=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2+24x+23=0 equation:


Simplifying
3x2 + 24x + 23 = 0

Reorder the terms:
23 + 24x + 3x2 = 0

Solving
23 + 24x + 3x2 = 0

Solving for variable 'x'.

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
7.666666667 + 8x + x2 = 0

Move the constant term to the right:

Add '-7.666666667' to each side of the equation.
7.666666667 + 8x + -7.666666667 + x2 = 0 + -7.666666667

Reorder the terms:
7.666666667 + -7.666666667 + 8x + x2 = 0 + -7.666666667

Combine like terms: 7.666666667 + -7.666666667 = 0.000000000
0.000000000 + 8x + x2 = 0 + -7.666666667
8x + x2 = 0 + -7.666666667

Combine like terms: 0 + -7.666666667 = -7.666666667
8x + x2 = -7.666666667

The x term is 8x.  Take half its coefficient (4).
Square it (16) and add it to both sides.

Add '16' to each side of the equation.
8x + 16 + x2 = -7.666666667 + 16

Reorder the terms:
16 + 8x + x2 = -7.666666667 + 16

Combine like terms: -7.666666667 + 16 = 8.333333333
16 + 8x + x2 = 8.333333333

Factor a perfect square on the left side:
(x + 4)(x + 4) = 8.333333333

Calculate the square root of the right side: 2.886751346

Break this problem into two subproblems by setting 
(x + 4) equal to 2.886751346 and -2.886751346.

Subproblem 1

x + 4 = 2.886751346 Simplifying x + 4 = 2.886751346 Reorder the terms: 4 + x = 2.886751346 Solving 4 + x = 2.886751346 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-4' to each side of the equation. 4 + -4 + x = 2.886751346 + -4 Combine like terms: 4 + -4 = 0 0 + x = 2.886751346 + -4 x = 2.886751346 + -4 Combine like terms: 2.886751346 + -4 = -1.113248654 x = -1.113248654 Simplifying x = -1.113248654

Subproblem 2

x + 4 = -2.886751346 Simplifying x + 4 = -2.886751346 Reorder the terms: 4 + x = -2.886751346 Solving 4 + x = -2.886751346 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-4' to each side of the equation. 4 + -4 + x = -2.886751346 + -4 Combine like terms: 4 + -4 = 0 0 + x = -2.886751346 + -4 x = -2.886751346 + -4 Combine like terms: -2.886751346 + -4 = -6.886751346 x = -6.886751346 Simplifying x = -6.886751346

Solution

The solution to the problem is based on the solutions from the subproblems. x = {-1.113248654, -6.886751346}

See similar equations:

| 0.75=x/28 | | -4-2z=-7-2z | | 944.3958=r^3 | | c^3*c= | | 5(3w-11)=-14 | | x-1=8x-57 | | x/26 | | 360=x+10+20 | | 3/8=s-2/34 | | 920m+140=129 | | -6/2=y/5 | | 43-4x=15-6x | | 2x^2=8.12403840463596 | | -ln(1/x) | | 1c+8+1c+6=14 | | 0.75(p-3)=5.88 | | 56+3y-11=180 | | 4-2=n | | 9+x-2=2x-3 | | 2x-4=8x+4 | | 0=4x^3-5 | | -7.44+3.58+18.9q=19.8q+7.75 | | 2x^2=66 | | 7c(c^3-2c^2+5)= | | 12x/6x=1 | | 2c+10=9+3c | | 12x/6x | | (log(35-x^3)/log(5-x))=3 | | x+22+2x+24=16 | | 3y-4(6)=6y/8 | | 4/3(p)-7/5= | | 100=4.9t^2 |

Equations solver categories